本文共 2325 字,大约阅读时间需要 7 分钟。
YUV:Y分量确定颜色的亮度(称为亮度或亮度),而U和V分量确定颜色本身(色度)
import cv2 as cvimport matplotlib.pyplot as pltimg = cv.imread('../images/scene_001.jpg')yuv = cv.cvtColor(img, cv.COLOR_BGR2YUV)y_img = yuv.copy()y_const = 255y_img[:, :, 1] = y_consty_img[:, :, 2] = y_constu_img = yuv.copy()u_img[:, :, 0] = y_constu_img[:, :, 2] = y_constv_img = yuv.copy()v_img[:, :, 0] = y_constv_img[:, :, 1] = y_constfig, ax = plt.subplots(2, 2, figsize=(8, 8))ax[0][0].set_title('origin')ax[0][0].imshow(cv.cvtColor(yuv, cv.COLOR_YUV2RGB))ax[0][1].set_title('y channel')ax[0][1].imshow(y_img[:, :, 0], cmap='gray')ax[1][0].set_title('u channel(y=' + str(y_const) + ')')ax[1][0].imshow(cv.cvtColor(u_img, cv.COLOR_YUV2RGB))ax[1][1].set_title('v channel(y=' + str(y_const) + ')')ax[1][1].imshow(cv.cvtColor(v_img, cv.COLOR_YUV2RGB))[axi.axis('off') for axi in ax.ravel()]plt.show()
import cv2 as cvimport numpy as npimport matplotlib.pyplot as pltimg = cv.imread('../images/scene_001.jpg')yuv = cv.cvtColor(img, cv.COLOR_BGR2YUV)hist_size = 256"""calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate]]) -> hist"""y_hist = np.array(cv.calcHist(img, [0], None, [hist_size], [0, hist_size - 1])).reshape(hist_size)fig, ax = plt.subplots(5, 2, figsize=(8, 8))ax[0][0].set_title('origin')ax[0][0].imshow(cv.cvtColor(img, cv.COLOR_BGR2RGB))ax[0][0].axis('off')ax[0][1].set_title('y hist')ax[0][1].hist(y_hist, 50)# Equalize histdef equalize(adjust_ratio, ii): rows, cols, _ = img.shape y_hist_equal = y_hist total = 0 for i in range(len(y_hist)): total += y_hist[i] tmp = total * 255 / rows / cols y_hist_equal[i] = int(min(max((tmp - i) * adjust_ratio + i, 0), 255)) yuv_equal = yuv.copy() for row in yuv_equal: for col in row: col[0] = y_hist_equal[int(col[0])] y_hist_equal = np.array(cv.calcHist(yuv_equal, [0], None, [hist_size], [0, hist_size - 1])).reshape(hist_size) ax[ii][0].set_title('Equalize(ratio=' + str(adjust_ratio) + ')') ax[ii][0].imshow(cv.cvtColor(yuv_equal, cv.COLOR_YUV2RGB)) ax[ii][0].axis('off') ax[ii][1].set_title('Equalized y hist') ax[ii][1].hist(y_hist_equal, 50)equalize(0, 1)equalize(0.33, 2)equalize(0.66, 3)equalize(1, 4)plt.show()
所谓的直方图均衡化,其实就是让y值多的点越来越多,y值少的点越来越少,穷者越穷,富者越富,对比度就会越来越大,区别就越大
转载地址:http://zhfqz.baihongyu.com/