博客
关于我
008 对比度调整-直方图均衡
阅读量:677 次
发布时间:2019-03-15

本文共 2325 字,大约阅读时间需要 7 分钟。

介绍

YUV:Y分量确定颜色的亮度(称为亮度或亮度),而U和V分量确定颜色本身(色度)

在这里插入图片描述
YUV分通道显示

import cv2 as cvimport matplotlib.pyplot as pltimg = cv.imread('../images/scene_001.jpg')yuv = cv.cvtColor(img, cv.COLOR_BGR2YUV)y_img = yuv.copy()y_const = 255y_img[:, :, 1] = y_consty_img[:, :, 2] = y_constu_img = yuv.copy()u_img[:, :, 0] = y_constu_img[:, :, 2] = y_constv_img = yuv.copy()v_img[:, :, 0] = y_constv_img[:, :, 1] = y_constfig, ax = plt.subplots(2, 2, figsize=(8, 8))ax[0][0].set_title('origin')ax[0][0].imshow(cv.cvtColor(yuv, cv.COLOR_YUV2RGB))ax[0][1].set_title('y channel')ax[0][1].imshow(y_img[:, :, 0], cmap='gray')ax[1][0].set_title('u channel(y=' + str(y_const) + ')')ax[1][0].imshow(cv.cvtColor(u_img, cv.COLOR_YUV2RGB))ax[1][1].set_title('v channel(y=' + str(y_const) + ')')ax[1][1].imshow(cv.cvtColor(v_img, cv.COLOR_YUV2RGB))[axi.axis('off') for axi in ax.ravel()]plt.show()

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
将RGB转成YUV,直方图均衡化Y,重新合成图片

代码实现(Python)

import cv2 as cvimport numpy as npimport matplotlib.pyplot as pltimg = cv.imread('../images/scene_001.jpg')yuv = cv.cvtColor(img, cv.COLOR_BGR2YUV)hist_size = 256"""calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate]]) -> hist"""y_hist = np.array(cv.calcHist(img, [0], None, [hist_size], [0, hist_size - 1])).reshape(hist_size)fig, ax = plt.subplots(5, 2, figsize=(8, 8))ax[0][0].set_title('origin')ax[0][0].imshow(cv.cvtColor(img, cv.COLOR_BGR2RGB))ax[0][0].axis('off')ax[0][1].set_title('y hist')ax[0][1].hist(y_hist, 50)# Equalize histdef equalize(adjust_ratio, ii):    rows, cols, _ = img.shape    y_hist_equal = y_hist    total = 0    for i in range(len(y_hist)):        total += y_hist[i]        tmp = total * 255 / rows / cols        y_hist_equal[i] = int(min(max((tmp - i) * adjust_ratio + i, 0), 255))    yuv_equal = yuv.copy()    for row in yuv_equal:        for col in row:            col[0] = y_hist_equal[int(col[0])]    y_hist_equal = np.array(cv.calcHist(yuv_equal, [0], None, [hist_size], [0, hist_size - 1])).reshape(hist_size)    ax[ii][0].set_title('Equalize(ratio=' + str(adjust_ratio) + ')')    ax[ii][0].imshow(cv.cvtColor(yuv_equal, cv.COLOR_YUV2RGB))    ax[ii][0].axis('off')    ax[ii][1].set_title('Equalized y hist')    ax[ii][1].hist(y_hist_equal, 50)equalize(0, 1)equalize(0.33, 2)equalize(0.66, 3)equalize(1, 4)plt.show()

所谓的直方图均衡化,其实就是让y值多的点越来越多,y值少的点越来越少,穷者越穷,富者越富,对比度就会越来越大,区别就越大

在这里插入图片描述
在这里插入图片描述

转载地址:http://zhfqz.baihongyu.com/

你可能感兴趣的文章
MySQL创建新用户以及ERROR 1396 (HY000)问题解决
查看>>
MySQL创建用户与授权
查看>>
MySQL创建用户报错:ERROR 1396 (HY000): Operation CREATE USER failed for 'slave'@'%'
查看>>
MySQL创建索引时提示“Specified key was too long; max key length is 767 bytes”
查看>>
mysql初始密码错误问题
查看>>
mysql判断某一张表是否存在的sql语句以及方法
查看>>
mysql加入安装策略_一键安装mysql5.7及密码策略修改方法
查看>>
mysql加强(1)~用户权限介绍、分别使用客户端工具和命令来创建用户和分配权限
查看>>
mysql加强(3)~分组(统计)查询
查看>>
mysql加强(4)~多表查询:笛卡尔积、消除笛卡尔积操作(等值、非等值连接),内连接(隐式连接、显示连接)、外连接、自连接
查看>>
mysql加强(5)~DML 增删改操作和 DQL 查询操作
查看>>
mysql加强(6)~子查询简单介绍、子查询分类
查看>>
mysql加强(7)~事务、事务并发、解决事务并发的方法
查看>>
mysql千万级大数据SQL查询优化
查看>>
MySQL千万级大表优化策略
查看>>
MySQL单实例或多实例启动脚本
查看>>
MySQL压缩包方式安装,傻瓜式教学
查看>>
MySQL原理、设计与应用全面解析
查看>>
MySQL原理简介—1.SQL的执行流程
查看>>
MySQL参数调优详解
查看>>